Affiliation:
1. Nuclear Safety Institute of the Russian Academy of Sciences (IBRAE RAN), 52 Bolshaya Tulskaya Street, Moscow 115191, Russia
Abstract
The existence of a system of short-lived, discrete, volume-localized electron quantum levels in positively charged fullerenes is theoretically and numerically demonstrated using the example of fullerenes C60 and C20. Unlike experimentally and theoretically well-studied electron states localized in a thin surface layer, these electron states are due to the flat part of the Coulomb potential of a positively charged fullerene sphere. The energy width of the system of such discrete volume-localized levels depends on the charge and increases with increasing charge. For C60+1, the energy width is 0.16 a.u. and increases up to 0.9 a.u. for fullerene C60+10. Thus, the electrons captured on these discrete levels of fullerene form a sort of short-lived superheavy “nanoatom” or “nanoion,” in which the electrons are localized inside a positively charged spherical “nucleus” with an atomic mass of 240 a.u. for C20 and 720 a.u. for C60. Numerous published papers have demonstrated theoretically and experimentally the existence of metastable positively charged C60 fullerenes with a charge of +10 or more, which suggests the possibility of experimental observation of the considering system of volume-localized electronic states. In conclusion, questions are discussed and estimates are made of the possibility of generating coherent radiation at these transitions.
Subject
General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献