Affiliation:
1. Division of Applied Life Science (BK21 Plus), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
2. Division of Special Purpose Tree, National Institute of Forest Science, Suwon 16631, Republic of Korea
3. Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
Abstract
An ethyl acetate fraction from Aralia elata (AEEF) was investigated to confirm its neuronal cell protective effect on ethanol-induced cytotoxicity in MC-IXC cells and its ameliorating effect on neurodegeneration in chronic alcohol-induced mice. The neuroprotective effect was examined by methylthiazolyldiphenyl-tetrazolium bromide (MTT) and 2′,7′-dichlorodihydrofluorescein diacetate (DCF-DA) assays. As a result, AEEF reduced alcohol-induced cytotoxicity and oxidative stress. To evaluate the improvement of learning, memory ability, and spatial cognition, Y-maze, passive avoidance, and Morris water maze tests were conducted. The AEEF groups showed an alleviation of the decrease in cognitive function in alcohol-treated mice. Then, malondialdehyde (MDA) levels and the superoxide dismutase (SOD) content were measured to evaluate the antioxidant effect of AEEF in the brain tissue. Treatment with AEEF showed a considerable ameliorating effect on biomarkers such as SOD and MDA content in alcohol-induced mice. To assess the cerebral cholinergic system involved in neuronal signaling, acetylcholinesterase (AChE) activity and acetylcholine (ACh) content were measured. The AEEF groups showed increased ACh levels and decreased AChE activities. In addition, AEEF prevented alcohol-induced neuronal apoptosis via improvement of mitochondrial activity, including reactive oxygen species levels, mitochondrial membrane potential, and adenosine triphosphate content. AEEF inhibited apoptotic signals by regulating phosphorylated c-Jun N-terminal kinases (p-JNK), phosphorylated protein kinase B (p-Akt), Bcl-2-associated X protein (BAX), and phosphorylated Tau (p-Tau). Finally, the bioactive compounds of AEEF were identified as caffeoylquinic acid (CQA), 3,5-dicaffeoylquinic acid (3,5-diCQA), and chikusetsusaponin IVa using the UPLC-Q-TOF-MS system.
Funder
National Research Foundation of Korea
Subject
Cell Biology,Ageing,General Medicine,Biochemistry
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献