Affiliation:
1. Department of Computer Science, Chengdu University of Information Technology, Chengdu 610225, China
Abstract
The spatial resolution of magnetic resonance imaging (MRI) is often limited due to several reasons, including a short data acquisition time. Several advanced interpolation-based image upsampling algorithms have been developed to increase the resolution of MR images. These methods estimate the voxel intensity in a high-resolution (HR) image by a weighted combination of voxels in the original low-resolution (LR) MR image. As these methods fall into the zero-order point estimation framework, they only include a local constant approximation of the image voxel and hence cannot fully represent the underlying image structure(s). To this end, we extend the existing zero-order point estimation to higher orders of regression, allowing us to approximate a mapping function between local LR-HR image patches by a polynomial function. Extensive experiments on open-access MR image datasets and actual clinical MR images demonstrate that our algorithm can maintain sharp edges and preserve fine details, while the current state-of-the-art algorithms remain prone to some visual artifacts such as blurring and staircasing artifacts.
Funder
National Natural Science Foundation of China
Subject
Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献