Comparison of Paraquat Herbicide Removal from Aqueous Solutions using Nanoscale Zero-Valent Iron-Pumice/Diatomite Composites

Author:

Khodabakhshi Abbas1ORCID,Mohammadi-Moghadam Fazel1ORCID,Amin Mohammad Mehdi2ORCID,Hamati Sara13ORCID,Hayarian Shakila1ORCID

Affiliation:

1. Department of Environmental Health Engineering, School of Health, Shahrekord University of Medical Sciences, Shahrekord, Iran

2. Department of Environmental Health Engineering, School of Health, Isfahan, Iran

3. Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran

Abstract

Paraquat is the most important herbicide of the bipyridyl group. The aim of the present study was to compare the removal of paraquat herbicide from aqueous solutions using nanoscale zero-valent iron-pumice/diatomite composites. In this study, nZVI was supported with diatomite and pumice. Scanning electron microscopy (SEM) analysis, X-ray diffraction spectroscopy (XRD), Fourier transform infrared spectrometry (FTIR), and specific surface area tests (BET) were used to evaluate the properties of nanoadsorbents. The residual concentration of paraquat in aqueous solution was detected by high-performance liquid chromatography (HPLC). Then, the effects of different variables including the pollutant concentration, contact time, temperature, adsorbents (D-nZVI and P-nZVI) dose, and pH, were investigated in a lab scale batch system. The results showed that the optimal pH for both processes was 3.74. In optimal conditions, the efficiencies of D-nZVI and P-nZVI were 92.76% and 85.28%, respectively. In addition, isotherm and adsorption kinetics studies indicated that P-nZVI follows the Langmuir and Freundlich isotherm models, and D-nZVI follows the Langmuir isotherm model, and both processes follow pseudo-second-order kinetics. The results indicated that the synthesized nanoparticles were suitable for removing paraquat from aqueous solutions. Both adsorbents were found to be very effective in removing similar compounds at ambient temperature in a short time.

Funder

Shahrekord University of Medical Sciences

Publisher

Hindawi Limited

Subject

General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3