Cycle Performance of Aerated Lightweight Concrete Windowed and Windowless Wall Panel from the Perspective of Lightweight Deep Learning

Author:

Yuan Xing1ORCID,Zhang Yao1ORCID,Lu Qinggang2ORCID,Zhang Shuhang3ORCID,Liu Hua2ORCID,Jin Mingchang3ORCID,Xu Feng1ORCID

Affiliation:

1. College of Civil Engineering, Nanjing Tech University, Nanjing 211816, China

2. Beijing Institute of Architectural Design, Beijing 100045, China

3. Tianjin Architecture Appraisal & Design Institute, Tianjin 300381, China

Abstract

This paper aims to explore the seismic mechanical properties of newly developed fabricated aerated lightweight concrete (ALC) wall panels to clarify the interaction mechanism between wall panels and structures. It first introduces the lightweight deep learning object detection algorithm and constructs a network model with faster operation speed based on the convolutional neural network. Secondly, combined with the deep learning object detection algorithm, the quasi-static loading system is adopted to conduct the repeated loading test on two fabricated ALC wall panels. Finally, the hysteresis load-displacement curve of each test is recorded. The experimental results show that the proposed deep learning algorithm greatly improves the operation speed and compresses the model size without reducing the accuracy. The lightweight deep learning algorithm is applied to the study of the slip performance of the wall plate. The pretightening force of the connecting screw characterizes the slip performance between the wall plate and the structural beam, thereby affecting the deformation response of the wall plate when the interstory displacement increases. The hysteresis curve of the ALC wall panel has obvious squeezing effect, indicating that the slip of the connector can unload part of the external load and delay the damage of the wall panel. The skeleton curve suggests that the fabricated windowless ALC wall panel has higher positive and negative initial stiffness and bearing capacity than the fabricated windowed wall panel. However, the degradation analysis of the stiffness curve reveals that the lateral stiffness deviation of the fabricated windowless ALC wall panel is more obvious. It confirms that the proposed connection method based on the lightweight deep learning model can improve the seismic performance of ALC wall panels and provide reference for the structural analysis of embedding fabricated ALC wall panels. This work shows the important practical value for exploring the application effect of embedded ALC wall panels.

Funder

National Basic Research Program of China

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3