Affiliation:
1. School of Computer and Information Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
2. Contemporary Business and Trade Research Center of Zhejiang Gongshang University, Key Research Institute of Humanities and Social Sciences of the Ministry of Education, Hangzhou 310018, China
3. School of Management and E-Business, Zhejiang Gongshang University, Hangzhou 310018, China
Abstract
The outbreak of COVID-19 has caused problems such as shortage of workforce, cost increase, cash flow tension, and uncertainty of supply chain. It has a specific negative impact on the raw material supply, procurement management, production resumption, logistics, and market of the supply chain, which can trigger cascading failures in supply chain networks. Aiming at the failure of upstream/downstream firms in supply chain networks due to the decreased product demand/material supply under the COVID-19, the present study adopted an underload cascading failure model for the supply chain networks. In this model, the hierarchical supply chain networks were constructed based on the Erdos Renyi (ER) model and Barabasi Albert (BA) model. The validity of the model was verified under random attack and target attack. In the random attack mode, the influences of model parameters were studied, and in the target attack mode, the influence of target protection and random protection measures on enhancing network invulnerability was also studied. Simulation results showed that the initial load and capacity lower bound of nodes impact cascading failure size. The former has a positive correlation with cascading failure size, while the latter negatively correlates with cascading failure size. Furthermore, random protection measures are more practical to prevent cascading failures.
Funder
Social Science Planning Foundation of Zhejiang Province
Subject
General Engineering,General Mathematics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献