Modelling Underload Cascading Failure and Mitigation Strategy of Supply Chain Complex Network in COVID-19

Author:

Liu Hong12ORCID,Han Yunyan3,Ni Jinlong12ORCID,Zhu Anding23ORCID

Affiliation:

1. School of Computer and Information Engineering, Zhejiang Gongshang University, Hangzhou 310018, China

2. Contemporary Business and Trade Research Center of Zhejiang Gongshang University, Key Research Institute of Humanities and Social Sciences of the Ministry of Education, Hangzhou 310018, China

3. School of Management and E-Business, Zhejiang Gongshang University, Hangzhou 310018, China

Abstract

The outbreak of COVID-19 has caused problems such as shortage of workforce, cost increase, cash flow tension, and uncertainty of supply chain. It has a specific negative impact on the raw material supply, procurement management, production resumption, logistics, and market of the supply chain, which can trigger cascading failures in supply chain networks. Aiming at the failure of upstream/downstream firms in supply chain networks due to the decreased product demand/material supply under the COVID-19, the present study adopted an underload cascading failure model for the supply chain networks. In this model, the hierarchical supply chain networks were constructed based on the Erdos Renyi (ER) model and Barabasi Albert (BA) model. The validity of the model was verified under random attack and target attack. In the random attack mode, the influences of model parameters were studied, and in the target attack mode, the influence of target protection and random protection measures on enhancing network invulnerability was also studied. Simulation results showed that the initial load and capacity lower bound of nodes impact cascading failure size. The former has a positive correlation with cascading failure size, while the latter negatively correlates with cascading failure size. Furthermore, random protection measures are more practical to prevent cascading failures.

Funder

Social Science Planning Foundation of Zhejiang Province

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3