An Optima Combination Method of Three-Frequency Real-Time Cycle Slip Detection for Non-Normal Ionospheric Variation Data

Author:

Gao Yaping1ORCID,Chen Guo1ORCID,Chen Xi1,Ma Liangliang1,Luo Tong1,Xue Dongdong1

Affiliation:

1. College of Earth Sciences, Chengdu University of Technology, Chengdu 610059, China

Abstract

Linear combinations of triple-frequency help improve the performance of cycle slip detection for high-precision positioning using a single receiver; however, the position can be easily misjudged under ionospheric scintillation conditions or low sampling rates. We propose a method, which is developed specially for the datasets under ionospheric scintillation conditions or low sampling rates, to detect the triple-frequency cycle slips in real-time based on optimal linear combination coefficients and ionospheric range delay. Detection formulas are derived from the triple-frequency geometry-free code-phase combination, and ionospheric range delay is estimated by the wide lane combination. In addition, the principle used to select an optimal linear phase combination coefficient is derived, and the optimal linear coefficient suitable under high ionospheric activity conditions is provided. Finally, the data collected from self-build stations JYPS and NQ01 are used to test the performance of the method. The results demonstrate that the improved method can be used to detect all combinations of cycle slips in real-time, even under conditions of ionospheric scintillation or a sampling period exceeding 10 s.

Funder

Chinese Academy of Sciences

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3