Affiliation:
1. National Digital Switching System Engineering & Technological R&D Centre, Zhengzhou 450002, China
2. 153 Central Hospital of Henan Province, Zhengzhou 450002, China
Abstract
Background. Dual-energy computed tomography (DECT) has been widely used due to improved substances identification from additional spectral information. The quality of material-specific image produced by DECT attaches great importance to the elaborated design of the basis material decomposition method. Objective. The aim of this work is to develop and validate a data-driven algorithm for the image-based decomposition problem. Methods. A deep neural net, consisting of a fully convolutional net (FCN) and a fully connected net, is proposed to solve the material decomposition problem. The former net extracts the feature representation of input reconstructed images, and the latter net calculates the decomposed basic material coefficients from the joint feature vector. The whole model was trained and tested using a modified clinical dataset. Results. The proposed FCN delivers image with about 60% smaller bias and 70% lower standard deviation than the competing algorithms, suggesting its better material separation capability. Moreover, FCN still yields excellent performance in case of photon noise. Conclusions. Our deep cascaded network features high decomposition accuracies and noise robust property. The experimental results have shown the strong function fitting ability of the deep neural network. Deep learning paradigm could be a promising way to solve the nonlinear problem in DECT.
Funder
National Key R&D Program of China
Subject
Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modelling and Simulation,General Medicine
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献