An Efficient Secure Sharing of Electronic Health Records Using IoT-Based Hyperledger Blockchain

Author:

S. Velmurugan1ORCID,M. Prakash2ORCID,S. Neelakandan3ORCID,Martinson Eric Ofori4ORCID

Affiliation:

1. Department of Information Technology, R.M.D. Engineering College, Kavaraipettai, India

2. School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, India

3. Department of Computer Science and Engineering, RMK Engineering College, Chennai, India

4. Department of Electronics and Communication Engineering, All Nations University, Koforidua, Ghana

Abstract

Electronic Health Record (EHR) systems are a valuable and effective tool for exchanging medical information about patients between hospitals and other significant healthcare sector stakeholders in order to improve patient diagnosis and treatment around the world. Nevertheless, the majority of the hospital infrastructures that are now in place lack the proper security, trusted access control, and management of privacy and confidentiality concerns that the current EHR systems are supposed to provide. Goal. For various EHR systems, this research proposes a Blockchain-enabled Hyperledger Fabric Architecture as a solution to this delicate issue. The three steps of the suggested system are the secure upload phase, the secure download phase, and authentication. Patient registration, login, and verification make up the authentication step. The administrator grants authorization to read, edit, delete, or revoke the files following user details verification. In the secure upload phase, feature extraction is carried out first, and then a hashed access policy is created from the extracted feature. Next, the hash value is stored in an IoT-based Hyperledger blockchain. The uploaded EHR files are additionally encrypted before being stored on the cloud server. In the secure download step, the physician uses a hashed access policy to send the request to the cloud and decrypts the corresponding files. The experimental findings demonstrate that the system outperformed cutting-edge techniques. The proposed Modified Key Policy Attribute-Based Encryption performs better for the remaining 10 to 25 mb file sizes. This IoT framework compares MKP-ABE with certain efficiency indicators, such as encryption, decryption period, protection level analysis and encrypted memory use, resource use on decryption, upload time, and transfer time, which are present in the KP-ABE, the ECC, RSA, and AES. Here, the IoT device suggested requires 4008 ms for data encryption and 4138 ms for the data decryption.

Publisher

Hindawi Limited

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3