Spatial Identification and Distribution Pattern of the Complexity of Rural Poverty in China Using Multisource Spatial Data

Author:

Qi Zhenyu1ORCID,Pan Jinghu1ORCID,Feng Yaya1ORCID

Affiliation:

1. College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, China

Abstract

Regional poverty is one of the most serious challenges facing the world today. Poverty, antipoverty, and poverty alleviation are the focus of the attention of scholars and the public. This paper takes China’s counties as the research unit, selects the influencing factors of poverty from natural and socio-economic factors, establishes an evaluation index system, simulates the natural poverty index and socio-economic poverty eradication index of each county, and clarifies the distribution characteristics of spatial poverty using GIS spatial analysis and BP artificial neural network. The results indicate that natural factors are the main cause of poverty in Chinese counties, with 710 counties having a high natural poverty index, accounting for nearly 30% of the total number of counties in the country. The national county-level natural poverty index shows a clear strip distribution pattern along latitude and longitude, with a strip distribution from north to south and from west to east; socio-economic factors have played a certain role in poverty alleviation, with as many as 1521 counties with low socio-economic poverty alleviation indices, accounting for approximately 64% of the total number of counties in the country. The spatial distribution of the county-level socio-economic poverty alleviation index is relatively fragmented. Through spatial scanning statistics, a total of 44 county poverty pressure index risk clusters reached a statistical significance level, involving 243 counties and districts. In poverty reduction practice, the internal counties and districts of contiguous poverty-stricken areas should strengthen cooperation and exchange. In the process of poverty alleviation and development, targeted poverty alleviation and economic development should be carried out based on the poverty-dominant type and self-development ability of the county, in order to improve efficiency. Regions that are relatively prosperous and have taken the lead in poverty reduction should play a leading and exemplary role in strengthening the radiation power of regional central cities. The prominent feature of this study is the comprehensive utilization of multisource data and the use of new spatial analysis methods (flexible spatial scanning method is widely used in the field of infectious disease prevention and control research). By constructing a multidimensional poverty measurement system that includes natural and social factors, it distinguishes the differences between the factors that cause poverty and the factors that eliminate poverty in regional poverty. At the same time, the flexible spatial scanning detection method was used to detect the differentiation mechanism of poverty spatial patterns.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Reference57 articles.

1. A multidimensional analysis of poverty in China from 1991 to 2006

2. In the pandemic, India’s middle class shrinks and poverty spreads while China sees smaller changes;Pewresearch,2021

3. Social panorama of Latin America 2020;Economic Commission for Latin America and the Caribbean,2021

4. Poor Areas, or Only Poor People?

5. Spatial identification of multidimensional poverty in China based on nighttime light remote sensing data;J. H. Pan;Economic Geography,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3