Evolution Law of Overburden Longitudinal Connected Fissures in a Shallowly Buried Coal Face with Thin Bedrock

Author:

Jia Housheng12,Pan Kun1ORCID,Wang Luyao1,Liu Shaowei12,Fu Mengxiong1ORCID,Ji Xiang1

Affiliation:

1. School of Energy Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China

2. Collaborative Innovation Center of Coal Work Safety, Jiaozuo, Henan 454003, China

Abstract

Longitudinal connected fissures in a shallowly buried coal face with thin bedrock are the main factor causing sand-burst accidents, water-burst accidents, and abnormal increases in water inflow. To understand the evolution of longitudinal connected fissures and propose method for controlling such fissures, 3-1 Coal of the Jinjie Coal Mine in Shendong Coal Group, China, was used as a case study. Physical simulation, numerical simulation, field measurements, and other measures were carried out to analyze thoroughly the opening and closure of fissures. At the same time, the stage characteristics of fissures evolution process are also obtained. The results indicate that when periodic weighting occurs, a longitudinal connected fissure starts to open. As the coal face moves on, the fissure expands gradually with the dynamic changes in horizontal force and rock dislocation; when the expansion reaches its limit, the key rock falls and the longitudinal connected fissure rapidly closes. With the advent of the next periodic weighting, the longitudinal connected fissure compacts further and the next longitudinal connected fissure appears. The formation of longitudinal connected fissures is described with reference to three factors: the advancement speed of the coal face, the holding power of the hydraulic support, and the filling degree of the goaf area, all of which can be easily controlled by engineering means. This study provides a basis for control of sand-burst accidents, water-burst accidents, and abnormal increase in water inflow in a shallow coal face with thin bedrock.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3