Affiliation:
1. School of Electrical Engineering, Nantong University, Nantong 226019, China
Abstract
This paper considers the parameter identification of Wiener systems with colored noise. The difficulty in the identification is that the model is nonlinear and the intermediate variable cannot be measured. Particle swarm optimization is an artificial intelligence evolutionary method and is effective in solving nonlinear optimization problem. In this paper, we obtain the identification model of the Wiener system and then transfer the parameter identification problem into an optimization problem. Then, we derive a particle swarm optimization iterative (PSOI) identification algorithm to identify the unknown parameter of the Wiener system. Furthermore, a gradient iterative identification algorithm is proposed to compare with the particle swarm optimization iterative algorithm. Numerical simulation is carried out to evaluate the performance of the PSOI algorithm and the gradient iterative algorithm. The simulation results indicate that the proposed algorithms are effective and the PSOI algorithm can achieve better performance over the gradient iterative algorithm.
Funder
Jiangsu Province Postdoctoral Research Funding Plan
Subject
Multidisciplinary,General Computer Science
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献