Observation and Modeling of Optical Emission Patterns and Their Transitions in a Penning Discharge

Author:

Klepper C. C.1,Hazelton R. C.1,Barakat F.12,Keitz M. D.1,Verboncoeur J. P.3

Affiliation:

1. HY-Tech Research Corporation, Radford, VA 24141, USA

2. Qimonda North America, Cary, NC 27513, USA

3. Department of Nuclear Engineering, University of California, Berkeley, CA 94720, USA

Abstract

A Penning discharge tube has been used as the excitation source for optical detection of gaseous species concentrations in a neutral gas. This type of diagnostic has been primarily used in magnetic fusion energy experiments for the detection of minority species in the effluent gas (e.g., for helium detection in a deuterium background). Recent innovations (US Patent no. 6351131, granted February 26, 2002) have allowed for extension of the operation range from <1 Pa to as high as 100 Pa and possibly beyond. This is done by dynamically varying the gauge magnetic field and voltage to keep the optical signals nearly constant (or at least away from a nonlinear dependence on the pressure). However, there are limitations to this approach, because the Penning discharge can manifest itself in a number of modes, each exhibiting a different spatial emission pattern. As a result, varying the discharge parameters can cause the gauge to undergo transitions between these modes, disrupting any intended monotonic dependence of the overall emission on the varied parameter and hence any predicable impact on the emission. This paper discusses some of the modes observed experimentally using video imaging of the discharge. It also presents a first successful application, a particle-in-cell (PIC) code, to simulate these modes and a mode transition. The hope is that a good understanding of the physics involved in the mode transitions may allow for methods of either avoiding or suppressing such transitions. This would aid in broadening the use of this plasma-based sensor technology.

Publisher

Hindawi Limited

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3