Recognition of Power Equipment Based on Multitask Sparse Representation

Author:

Lei Lei12,Wu Jian12ORCID,Zheng Shuhai3,Zhang Xinyi4,Wang Liang12,Wang Yanfei5,Wan Hao12

Affiliation:

1. State Grid Shaanxi Electric Power Science Research Institute, Xi’an, China

2. State Grid (Xi’an) Environmental Technology Center Co., Ltd, Xi’an, China

3. State Grid Co., Ltd. DC Construction Branch, Beijing, China

4. State Grid Shaanxi Electric Power Xi’an Power Supply Company, Xi’an, China

5. Sichuan Hengchuang Tiandi Automation Equipment Co., Ltd., Chengdu, China

Abstract

Image analysis of power equipment has important practical significance for power-line inspection and maintenance. This paper proposes an image recognition method for power equipment based on multitask sparse representation. In the feature extraction stage, based on the two-dimensional (2D) random projection algorithm, multiple projection matrices are constructed to obtain the multilevel features of the image. In the classification process, considering that the image acquisition process will inevitably be affected by factors such as light conditions and noise interference, the proposed method uses the multitask compressive sensing algorithm (MtCS) to jointly represent multiple feature vectors to improve the accuracy and robustness of reconstruction. In the experiment, the images of three types of typical power equipment of insulators, transformers, and circuit breakers are classified. The correct recognition rate of the proposed method reaches 94.32%. In addition, the proposed method can maintain strong robustness under the conditions of noise interference and partial occlusion, which further verifies its effectiveness.

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3