Mutation Screening of MED27 in a Large Dystonia Cohort

Author:

Lin Junyu1ORCID,Li Chunyu1,Hou Yanbing1,Zhang Lingyu1,Ou Ruwei1,Wei Qianqian1ORCID,Liu Kuncheng1ORCID,Xiao Yi1,Jiang Qirui1ORCID,Shang Huifang1ORCID

Affiliation:

1. Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China

Abstract

Objectives. Recently, biallelic variants in MED27 have been identified to correlate with complex dystonia. However, no replicative study has been conducted in larger dystonia cohorts. In this study, we aimed to systematically evaluate the genetic associations of MED27 with dystonia in a large dystonia cohort. Materials and Methods. We analyzed rare variants (minor allele frequency < 0.01 ) of MED27 in a large Chinese dystonia cohort with whole exome sequencing. The overrepresentation of rare variants in patients was examined with Fisher’s exact test at allele and gene levels. Results. A total of 688 patients with dystonia were included in the study, including 483 isolated dystonia, 133 combined dystonia, and 72 complex dystonia. The average age at onset (SD) was 34.3 (19.1) years old. After applying filtering criteria, five rare variants, namely, p.R247H, p.P174A, p.P123A, p.L120F, and p.F56C, were identified in six individuals. All of them carried the variant in the heterozygous form, and no patients with compound heterozygous or homozygous alleles were identified. At allele level, no variant was associated with risk of dystonia. Gene-based burden analysis did not detect enrichment of rare variants of MED27 in dystonia either. Conclusion. Variants of MED27 were rare in Chinese dystonia patients, probably because that mutations in MED27 are more associated with more complex neurodevelopmental disorders that can also include dystonia among the various neurological features. Further studies are needed to confirm the role of MED27 in dystonia and other neurological disorders.

Funder

Sichuan Science and Technology Program

Publisher

Hindawi Limited

Subject

Neurology (clinical),Neurology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3