Affiliation:
1. College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China
2. College of Information Science and Engineering, Jishou University, Jishou 416000, China
Abstract
Signal-to-noise ratio (SNR) estimation is a fundamental task of spectrum management and data transmission. Existing methods for SNR estimation usually suffer from significant estimation errors when SNR is low. This paper proposes a deep learning (DL) based SNR estimation algorithm using constellation diagrams. Since the constellation diagrams exhibit different patterns at different SNRs, the proposed algorithm achieves SNR estimation via constellation diagram recognition, which can be easily handled based on DL. Three DL networks, AlexNet, InceptionV1, and VGG16, are utilized for DL based SNR estimation. Experimental results show that the proposed algorithm always performs well, especially in low SNR scenarios.
Funder
National Natural Science Foundation of China
Subject
Computer Networks and Communications,Computer Science Applications
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献