Design and Experiment Study of Ultrasonic Longitudinal-Torsional Compound Consolidation Vibration System for Metal Foil

Author:

Zhong Xiangqiang12,Zhang Benxue2,Huang Weiqing3ORCID,Di Zhimin2,Fang Huajie2

Affiliation:

1. State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

2. School of Mechanical and Automotive Engineering, Anhui Polytechnic University, Wuhu 241000, China

3. School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou 510006, China

Abstract

In order to realize the connection for metal foil, a longitudinal-torsional compound consolidation vibration system is proposed, and relative experiments are carried out. Firstly, the structure of longitudinal-torsional compound consolidation vibration system was designed, detailed structural design of the compound piezoelectric transducer and the compound horn in the vibration system was carried out, and torsional vibration analysis of the compound horn with spiral grooves was carried out based on mechanical principle. Secondly, modal calculation and harmonic response analysis of longitudinal-torsional compound consolidation vibration system were carried out, and corresponding vibration mode and harmonic frequency were obtained. The effect of structural parameters for the compound horn on the frequency of the consolidation vibration system was analysed, and structural parameters of the compound horn were optimized. Finally, the prototype was made, and the experimental platform was built to test the amplitude. When the frequency is near 20000 Hz, the resonance is achieved in three directions at the same time, and the resonance frequency is 19800 Hz. Through the frequency-scanning test, the maximum longitudinal amplitude of the consolidation vibration system is 16 μm, and the maximum torsional amplitudes of X and Y are 7.9 μm and 8.1 μm. The longitudinal-torsional compound consolidation vibration system can realize the connection of the same and different metal foils and has broad application prospects.

Funder

University Natural Science Research Project of Anhui Province

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3