Affiliation:
1. KACST, Saudi Arabia
2. Prince Sultan University, Saudi Arabia
3. Public Security, Saudi Arabia
4. Department of Elect. Engineering, King Saud University, Saudi Arabia
Abstract
Nowadays, there is a global change in lifestyle that is moving more toward the use of e-services and smart devices which necessitate the verification of user identity. Different organizations have put into place a range of technologies, hardware, and/or software to authenticate users using fingerprints, iris recognition, and so forth. However, cost and reliability are significant limitations to the use of such technologies. This study presents a nonfiducial PPG-based subject authentication system. In particular, the photoplethysmogram (PPG) signal is first filtered into four signals using the discrete wavelet transform (DWT) and then segmented into frames. Ten simple statistical features are extracted from the frame of each signal band to compose the feature vector. Augmenting the feature vector with the same features extracted from the 1st derivative of the corresponding signal is investigated, along with different fusion approaches. A support vector machine (SVM) classifier is then employed for the purpose of identity authentication. The proposed authentication system achieved an average authentication accuracy of 99.3% using a 15 sec frame length with the augmented multiband approach.
Subject
Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献