Evaluating the Fatigue Resistance of the Innovative Modified-Reinforced Composite Asphalt Mixture

Author:

Shafabakhsh Gholamali1ORCID,Akbari Mahdi1ORCID,Bahrami Hossein1ORCID

Affiliation:

1. Faculty of Civil Engineering, Semnan University, Semnan, Iran

Abstract

Fatigue failure is regarded as one of the most common failures in the road pavement and necessitates spending huge cost annually to maintain the road. Asphalt binder modification and asphalt mixture reinforcement are among the commonly used methods to increase the pavement resistance to a failure caused by fatigue. By proposing a modified-reinforced composite hot mix asphalt (MRC-HMA), the present study aimed to examine the fatigue life of this mixture with one of the most traditional methods (i.e., four-point bending beam fatigue test) and compare it at constant strain conditions and the strain levels of 500, 700, and 900  μ ε and a temperature of 20 ± 0.8 ° C to that of the other three specimens, including control specimens, geogrid-reinforced (GR-HMA) specimens, and nanosilica-modified (NSM-HMA) specimens with 5% nanosilica. In all experiments, the condition to reach the failure stage was assumed equivalent to a 50% reduction in the stiffness coefficient in each load repetition, and the load was applied semisinusoidal at a frequency of 10 Hz without rest. The results showed that the MRC-HMA mixture improved the fatigue life at the strain level of 500  μ s by about 701, 172.5, and 156.4% compared to the control, NSM-HMA, and GR-HMA specimens, respectively. Based on the results, the use of GR-HMA specimens has almost the same results as NSM-HMA ones, but the use of the MRC-HMA mixture can significantly increase the fatigue life of MRC-HMA in all three levels of strain compared to all specimens studied in the present study. Thus, the introduced mixture can be a proper choice for pavements with heavy or light (with a large amount) traffic loads, which usually have a vast adverse effect on the fatigue behaviour of asphalt mixtures.

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3