Diagnosis of Asthma Based on Routine Blood Biomarkers Using Machine Learning

Author:

Zhan Jun1,Chen Wen2,Cheng Longsheng1,Wang Qiong2,Han Feifei2,Cui Yubao2ORCID

Affiliation:

1. School of Economics and Management, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, China

2. Department of Clinical Laboratory, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi 214023, Jiangsu Province, China

Abstract

Intelligent medical diagnosis has become common in the era of big data, although this technique has been applied to asthma only in limited contexts. Using routine blood biomarkers to identify asthma patients would make clinical diagnosis easier to implement and would enhance research of key asthma variables through data mining techniques. We used routine blood data from healthy individuals to construct a Mahalanobis space (MS). Then, we calculated Mahalanobis distances of the training routine blood data from 355 asthma patients and 1,480 healthy individuals to ensure the efficiency of MS. Orthogonal arrays and signal-to-noise ratios were used to optimize blood biomarker variables. Receiver operating characteristic (ROC) curve was used to determine the threshold value. Ultimately, we validated the system on 182 individuals based on the threshold value. Out of 35 patients with asthma, MTS correctly classified 94.15% of patients. In addition, 97.20% of 147 healthy individuals were correctly classified. The system isolated 7 routine blood biomarkers. Among these biomarkers, platelet distribution width, mean platelet volume, white blood cell count, eosinophil count, and lymphocyte ratio performed well in asthma diagnosis. In brief, MTS shows promise as an accurate method to identify asthma patients based on 7 vital blood biomarker variables and threshold determined by the ROC curve, thus offering the potential to simplify diagnostic complexity and optimize clinical efficiency.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3