The Role of Coal Mechanical Characteristics on Reservoir Permeability Evolution and Its Effects on CO2 Sequestration and Enhanced Coalbed Methane Recovery

Author:

Han Hao12ORCID,Liang Shun123ORCID,Liang Yaowu1ORCID,Fu Xuehai3ORCID,Kang Junqiang3ORCID,Yu Liqiang1ORCID,Tang Chuanjin1ORCID

Affiliation:

1. State Key Laboratory of Coal Resource and Mine Safety, School of Mines, China University of Mining and Technology, Xuzhou, Jiangsu 221008, China

2. College of Mining Engineering, Liaoning Technical University, Fuxin, Liaoning 123000, China

3. Key Laboratory of CBM Resources and Reservoir Formation Process, Ministry of Education, China University of Mining and Technology, Xuzhou, Jiangsu 221008, China

Abstract

Elastic modulus is an important parameter affecting the permeability change in the process of coalbed methane (CBM)/enhanced coalbed methane (ECBM) production, which will change with the variable gas content. Much research focuses on the constant value of elastic modulus; however, variable stiffness of coal during CO2 injection has been considered in this work. The coupled thermo-hydro-mechanical (THM) model is established and then validated by primary production data, as well as being applied in the prediction of CO2/N2-ECBM recovery. The results show that the harder coal seam is beneficial to primary production, while the softer coal seam results in greater CO2/N2-ECBM recovery and CO2 sequestration. N2 and CO2 mixture injection could be applied to balance early N2 breakthrough and pronounced matrix swelling induced by CO2 adsorption, and to prolong the process of effective CH4 recovery. Besides, reduction in stiffness of coal seam during CO2 injection would moderate the significant permeability loss induced by matrix swelling. With the increase of the weakening degree of coal seam stiffness, CO2 cumulative storage also shows an increasing trend. Neglecting the weakening effect of CO2 adsorption on coal seam stiffness could underestimate the injection capacity of CO2. Injection of hot CO2 could improve the permeability around injection well and then enhance CO2 cumulative storage and CBM recovery. Furthermore, compared with ECBM production, injection temperature is more favorable for CO2 storage, especially within hard coal seams. Care should be considered that significant permeability change is induced by mechanical characteristics alterations in deep burial coal seams in further study, especially for CO2-ECBM projects.

Funder

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3