Nonlinear Seismic Performance Evaluation of Flexural Slotted Connection Using Endurance Time Method

Author:

Kolbadi Seyed Mohamad Seyed1ORCID,Piri Hosein2ORCID,Keyhani Ali2ORCID,Seyed-Kolbadi S.Mahdi3ORCID,Mirtaheri Masoud3ORCID

Affiliation:

1. Department of Civil Engineering, Technical and Vocational University (TVU), Tehran, Iran

2. Department of Civil Engineering, Shahrood University of Technology, Shahrood, Iran

3. Department of Civil Engineering, K. N. Toosi University of Technology, Tehran, Iran

Abstract

The equivalent statistical methods, spectral analysis, and time history analysis are usually offered in the steel structure design regulations. Among these methods, the third one is more accurate; however, it requires more time to align the accelerometers due to a large number of analyses. In the endurance time (ET) method, incremental acceleration functions gradually and uniformly increases over time while their linear and nonlinear response spectra are proportional to the mean of the real seismic spectrum. These functions are used as input functions to analyze the nonlinear time history of structures, and the performance of structures is evaluated based on the maximum length of time they can meet specified performance goals. A three-story steel bending frame with (slotted web) SW and (web unslotted flange) WUF connection is examined through the performance time method in performance-based design. This article aimed at evaluating the seismic performance of these connections in the bending frame through endurance time analysis to predict the structural response in the probabilistic evaluation of the seismic performance of the structures. It is found that the endurance time analysis is justified with the seismic performance of the connections with low computational cost and proper accuracy. The results of comparing both SW and WUF connections indicated that the SW connection prevents the connection welding area from being failed due to transferring the plastic joint into the beam and in an area away from the column face and causes less damage compared to the WUF connection.

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3