Integrated Deep Neural Networks-Based Complex System for Urban Water Management

Author:

Gao Xu12,Zeng Wenru1ORCID,Shen Yu13ORCID,Guo Zhiwei1ORCID,Yang Jinhui1ORCID,Cheng Xuhong1ORCID,Hua Qiaozhi4ORCID,Yu Keping5ORCID

Affiliation:

1. National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China

2. Chongqing Sino French Environmental Excellence Research & Development Center Co., Ltd., Chongqing 400067, China

3. Chongqing South-to-Thais Environmental Protection Technology Research Institute Co., Ltd., Chongqing 400069, China

4. Computer School, Hubei University of Arts and Science, Xiangyang 441000, China

5. Global Information and Telecommunication Institute, Waseda University, Shinjuku, Tokyo 169-8050, Japan

Abstract

Although the management and planning of water resources are extremely significant to human development, the complexity of implementation is unimaginable. To achieve this, the high-precision water consumption prediction is actually the key component of urban water optimization management system. Water consumption is usually affected by many factors, such as weather, economy, and water prices. If these impact factors are directly combined to predict water consumption, the weight of each perspective on the water consumption will be ignored, which will be greatly detrimental to the prediction accuracy. Therefore, this paper proposes a deep neural network-based complex system for urban water management. The essence of it is to formulate a water consumption prediction model with the aid of principal component analysis (PCA) and the integrated deep neural network, which is abbreviated as UWM-Id. The PCA classifies the factors affecting water consumption in the original data into three categories according to their correlation and inputs them into the neural network model. The results in the previous step are assigned weights and integrated into the form of fully connected layer. Finally, analyzing the sensitivity of the proposed UWM-Id and comparing its performance with a series of commonly used baseline methods for data mining, a large number of experiments have proved that UWM-Id has good performance and can be used for urban water management system.

Funder

National Key Research & Development Program of China

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3