An Efficient and Effective Approach for Flooding Attack Detection in Optical Burst Switching Networks

Author:

Almaslukh Bandar1ORCID

Affiliation:

1. Department of Computer Science, College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia

Abstract

Optical burst switching (OBS) networks are frequently compromised by attackers who can flood the networks with burst header packets (BHPs), causing a denial of service (DoS) attack, also known as a BHP flooding attack. Nowadays, a set of machine learning (ML) methods have been embedded into OBS core switches to detect these BHP flooding attacks. However, due to the redundant features of BHP data and the limited capability of OBS core switches, the existing technology still requires major improvements to work effectively and efficiently. In this paper, an efficient and effective ML-based security approach is proposed for detecting BHP flooding attacks. The proposed approach consists of a feature selection phase and a classification phase. The feature selection phase uses the information gain (IG) method to select the most important features, enhancing the efficiency of detection. For the classification phase, a decision tree (DT) classifier is used to build the model based on the selected features of BHPs, reducing the overfitting problem and improving the accuracy of detection. A set of experiments are conducted on a public dataset of OBS networks using 10-fold cross-validation and holdout techniques. Experimental results show that the proposed approach achieved the highest possible classification accuracy of 100% by using only three features.

Funder

Prince Sattam bin Abdulaziz University

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Detection of Burst Header Packet Flooding Attacks via Optimization based Deep Learning Framework in Optical Burst Switching Network;Informacije MIDEM - Journal of Microelectronics, Electronic Components and Materials;2023-12-19

2. Impact of Fuzzy Offset Time on Delay and Burst Loss Ratio for Optical Burst Switching Networks;International Journal of Engineering and Advanced Technology;2023-02-28

3. An Efficient AI model for identification and classification of pneumonia from chest x-ray images;2022 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES);2022-07-15

4. A Lightweight Deep Learning-Based Pneumonia Detection Approach for Energy-Efficient Medical Systems;Wireless Communications and Mobile Computing;2021-04-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3