An Enriched Environment Enhances Angiogenesis Surrounding the Cingulum in Ischaemic Stroke Rats

Author:

Shen Xueyan1,Luo Lu1,Wang Fei23,Yu Kewei1,Xie Hongyu1,Tian Shan1,Liu Gang1,Bao Chunrong14,Fan Yunhui1,Xing Ying1,Wang Nianhong1,Li Siyue1,Liu Li1,Zhang Qun1,Wu Yi1ORCID

Affiliation:

1. Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200041, China

2. Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China

3. Department of Hand and Upper Extremity Surgery, Jing’an District Central Hospital of Shanghai, Fudan University, Shanghai 200040, China

4. School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China

Abstract

An enriched environment (EE) has been demonstrated to improve functional recovery in animal models of ischaemic stroke through enhancing vascular endothelial growth factor- (VEGF-) mediated neuroprotection accompanied by angiogenesis in the ischaemic hemisphere. Whether EEs also promote VEGF-mediated neuroprotection and angiogenesis in the contralateral hemisphere remains unclear. Here, we explored the effect of EEs on VEGF expression and angiogenesis within the contralateral cerebral cortex in a rat middle cerebral artery occlusion/reperfusion (MCAO/r) model. We assessed the expression levels of platelet endothelial cell adhesion molecule-1 (CD31), VEGF, and endothelial nitric oxide synthase (eNOS) in the whole contralateral cerebral cortex using Western blotting assay but did not find an increase in the expression of CD31, VEGF, or eNOS in MCAO/r rats housed in EEs, which suggested that EEs did not enhance the overall expression of VEGF and eNOS or angiogenesis in the entire contralateral cortex. We further analysed the local effect of EEs by immunohistochemistry and found that in and around the bilateral cingulum in MCAO/r rats housed in EEs, haematopoietic progenitor cell antigen- (CD34-) positive endothelial progenitor cells were significantly increased compared with those of rats housed in standard cages (SCs). Further experiments showed that EEs increased neuronal VEGF expression surrounding the cingulum in MCAO/r rats and robustly upregulated eNOS expression. These results revealed that EEs enhanced angiogenesis, VEGF expression, and activation of the VEGF-eNOS pathway in and/or around the cingulum in MCAO/r rats, which were involved in the functional recovery of MCAO/r rats.

Funder

Shanghai Municipal Key Clinical Specialty

Publisher

Hindawi Limited

Subject

Clinical Neurology,Neurology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3