A Study on Dynamic Characteristics of Satellite Antenna System considering 3D Revolute Clearance Joint

Author:

Bai Zhengfeng1ORCID,Zhao Jijun1

Affiliation:

1. Department of Mechanical Engineering, Harbin Institute of Technology, Weihai 264209, China

Abstract

Clearances in the joints of real mechanisms are unavoidable due to assemblage, manufacturing errors, and wear. The dual-axis driving and positioning mechanism is one kind of space actuating mechanism for satellite antenna to implement precise guidance and positioning. However, in dynamics analysis and control of the satellite antenna system, it is usually assumed that the revolute joint in the satellite antenna system is perfect without clearances or imperfect with planar radial clearance. However, the axial clearance in an imperfect revolute joint is always ignored. In this work, the revolute joint is considered as a 3D spatial clearance joint with both the radial and axial clearances. A methodology for modeling the 3D revolute joint with clearances and its application in satellite antenna system is presented. The dynamics modeling and analysis of the satellite antenna system are investigated considering the 3D revolute clearance joint. Firstly, the mathematical model of the 3D revolute clearance joint is established, and the definitions of the radial and axial clearance are presented. Then, the potential contact modes, contact conditions, and contact detection of the 3D revolute clearance joint are analyzed. Further, the normal and tangential contact force models are established to describe the contact phenomenon and determine the contact forces in the 3D revolute clearance joint. Finally, a satellite antenna system considering the 3D revolute clearance joint with spatial motion is presented as the application example. Different case studies are presented to discuss the effects of the 3D revolute clearance joint. The results indicate that the 3D revolute clearance joint will lead to more severe effects on the dynamic characteristics of the satellite antenna system. Therefore, the effects of axial clearance on the satellite antenna system cannot be ignored in dynamics analysis and design of the satellite antenna system.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3