Evaluator: A Multilevel Decision Approach for Web-Based Landmark Evaluation

Author:

Yin Meijuan1ORCID,Yang Wen1,Liu Xiaonan1,Luo Xiangyang1

Affiliation:

1. China State Key Laboratory of Mathematical Engineering and Advanced Computing, Zhengzhou 450002, China

Abstract

Street-level landmarks are an important basis for street-level IP geolocation, and the web-based landmark is one of the main sources of street-level landmarks. Considering the existing street-level landmark evaluation methods having low accuracy and strict constraints, this paper analyses the causes and evaluation idea of invalid web-based candidate landmarks and proposes Evaluator, a web-based landmark evaluation approach. Evaluator adopts the idea of the decision tree to filter invalid landmarks layer by layer and comprehensively estimates the quantitative reliability of candidate landmarks with public data and services to obtain reliable landmarks. This paper proposes the domain name system (DNS) distributed query algorithm to effectively resolve all IP addresses of a domain name, which provides data support for Evaluator to filter candidate landmarks. Meanwhile, this paper also proposes a reverse verification algorithm to obtain all domain names of an IP address, which provides an important reference to calculate the reliability of a reliable landmark. In addition, gradient descent is used to assess the parameters of the reliability estimating model, which effectively improves the robustness of Evaluator. Experiments show that reliable landmarks from Evaluator reduce the geolocation error of 100 targets in Hong Kong from 7.30 km to 3.91 km, compared with the landmark verifying method (LVM), one of the latest web-based landmark evaluation methods. Moreover, Evaluator significantly improves the evaluation coverage based on the same geolocation accuracy with street-level landmark evaluation (SLE), one of the latest landmark evaluation methods.

Funder

National Key R&D Program of China

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3