Dynamic Origin-Destination Matrix Estimation Based on Urban Rail Transit AFC Data: Deep Optimization Framework with Forward Passing and Backpropagation Techniques

Author:

Yang Yuedi1ORCID,Liu Jun1ORCID,Shang Pan1ORCID,Xu Xinyue2ORCID,Chen Xuchao3ORCID

Affiliation:

1. School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China

2. State Key Laboratory of Railway Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, China

3. Beijing Infrastructure Investment Co., LTD, Beijing 100044, China

Abstract

At present, the existing dynamic OD estimation methods in an urban rail transit network still need to be improved in the factors of the time-dependent characteristics of the system and the estimation accuracy of the results. This study focuses on predicting the dynamic OD demand for a time of period in the future for an urban rail transit system. We propose a nonlinear programming model to predict the dynamic OD matrix based on historic automatic fare collection (AFC) data. This model assigns the passenger flow to the hierarchical flow network, which can be calibrated by backpropagation of the first-order gradients and reassignment of the passenger flow with the updated weights between different layers. The proposed model can predict the time-varying OD matrix, the number of passengers departing at each time, and the travel time spent by passengers, of which the results are shown in the case study. Finally, the results indicate that the proposed model can effectively obtain a relatively accurate estimation result. The proposed model can integrate more traffic characteristics than traditional methods and provides an effective and hierarchical passenger flow estimation framework. This study can provide a rich set of passenger demand for advanced transit planning and management applications, for instance, passenger flow control, adaptive travel demand management, and real-time train scheduling.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3