Comparison of the Efficiency of Two Novel Guided Bone Regeneration Devices in the Rabbit Calvarial Model

Author:

Zakaria Osama1ORCID

Affiliation:

1. Department of Biomedical Dental Sciences, Oral and Maxillofacial Division, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia

Abstract

Background. Creating a secluded large space using guided bone regeneration (GBR) is a novel osteogenesis technique used in the prevention of premature membrane exposure complications. However, this technique is not considered clinically feasible. Objectives. This study aimed to compare the outcome of the insertion of two novel GBR devices in a rabbit calvarial model in terms of mode of action, simplicity, and amount of new space and bone gained. Materials and Methods. The expansible GBR (EGBR) device, composed mainly of a titanium plate, silicone membrane, and activation screw, was inserted beneath the periosteum in the calvarial area of eight rabbits. The smart GBR (SGBR) device, composed of silicone sheets and Nitinol strips, were inserted beneath the periosteum in the calvarial area of another 10 rabbits. Half of each group was sacrificed 2 months after surgery, and the other half was sacrificed after 4 months. Results. Histological and microradiographical analysis showed that, at 2 months, the EGBR device achieved a mean space gain of 207.2 mm3, a mean bone volume of 68.2 mm3, and a mean maximum bone height of 1.9 mm. Values for the same parameters at 4 months were 202.1 mm3, 70.3 mm3, and 1.6 mm, respectively. The SGBR device had significantly higher P < 0.05 mean space gain (238.2 mm3; 239.5 mm3), bone volume (112.9 mm3, 107.7 mm3), and bone height (2.7 mm; 2.6 mm) than the EGBR device at 2 and 4 months, respectively. Conclusion. Both devices proved to be effective in augmenting bone vertically through the application of GBR and soft tissue expansion processes. However, the SGBR device was more efficient in terms of mode of action, simplicity, and amount of bone created in the new space.

Publisher

Hindawi Limited

Subject

General Environmental Science,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3