Preparation of Graphene-Modified Anticorrosion Coating and Study on Its Corrosion Resistance Mechanism

Author:

Wang Peng1ORCID,Cai Dayong1

Affiliation:

1. College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, China

Abstract

When aluminum alloy is present in a Cl−-rich environment, the surface oxide film is easily damaged, resulting in faster dissolution of the substrate. The application of graphene-modified anticorrosion coating can effectively prevent the occurrence of corrosion. In this study, to explore the corrosion resistance of graphene-modified anticorrosion coating on the surface of aluminum alloy, we prepared graphene-modified anticorrosion coating on the surface of aluminum alloy and investigated the corrosion resistance mechanism. Epoxy resin primer and polyurethane top coat were modified by predispersed reduced graphene oxide (rGO). Scanning electron microscope (SEM) and Raman spectrum were used to investigate the microstructure of graphene-modified anticorrosion coating, and it was found that the addition of rGO could effectively improve the porosity defect of epoxy resin primer. Electrochemical workstation was used to quickly characterize the corrosion resistance of graphene-modified anticorrosion coating, and the change of the electrochemical curve during soaking in 3.5% NaCl was investigated every 5 hours. It was found that the application of rGO to modify the anticorrosion coating could improve the corrosion resistance of the anticorrosion coating, and as the soaking time increased, the corrosion resistance of graphene-modified anticorrosion coating changed regularly. The study results indicated that when the content of rGO was 0.4%, the porosity of epoxy coating decreased from 1.54% to 0.33%, the porosity dropped by an order of magnitude, and the self-corrosion voltage was relatively positive (-0.72434 V). The self-corrosion current density was the lowest ( 1.948 × 10 6 A / c m 2 ), and at the low frequency, the impedance modulus was the highest (103). After the equivalent circuit fitting, the dispersion index was relatively high, the dispersion effect was relatively weak, and the corrosion resistance of the coating was improved. For graphene-modified anticorrosion coating, in the early stage of corrosion protection, the existence of pores and other defects in the coating might increase the dispersion effect, resulting in greatly decreased corrosion resistance of the coating. In the middle stage of corrosion protection, the pores in the coating would be completely filled by corrosive ions, resulting in a weakened dispersion effect. Therefore, the decrease in the corrosion resistance of the coating was slowed down and became stable.

Publisher

Hindawi Limited

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment,Atomic and Molecular Physics, and Optics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3