A Study of Contact Detection between Noncircular Particles in Discrete Element Method

Author:

Li Chengbo1ORCID,Gao Qianqian1,Li Xianchang1ORCID

Affiliation:

1. College of Materials Science and Engineering, Anyang Institute of Technology, Anyang 455000, China

Abstract

One of the key points of modeling noncircular particles in the discrete element method is the contact detection of particles. In this study, a general contact detection algorithm of two-dimensional particles with analytic shape functions is provided. The contact detection of particles with strictly convex shape function, such as ellipses and superellipses, is solved by Newton–Raphson method, and a grid method is provided to deal with heart-shaped particles. The grid method can be generalized into a particle system, in which the shape function is not convex. The accuracy and stability of the algorithm are verified by a series of tests. For the collision of a pair of ellipses with an aspect ratio of α  =  a / b  = 1000, the efficiency is not worse than the Newton–Raphson method. For random packing under gravity, no residual kinetic energy is observed, and the force that acts on the bottom is equal to the gravity, that is, the system reaches a mechanical equilibrium state. After equilibrium, the process of hopper discharge is also simulated. The present method is suitable for arbitrarily shaped particles with analytic shape functions in two-dimensional cases. In addition to superellipses, the method can also be applied to other particle systems as long as the shape functions are given.

Funder

Henan Province Foundation for University Key Teacher

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3