Efficient Processing of Movingk-Range Nearest Neighbor Queries in Directed and Dynamic Spatial Networks

Author:

Cho Hyung-Ju1,Jin Rize2

Affiliation:

1. Department of Software, Kyungpook National University, Gyeongsang-daero 2559, Sangju-si, Gyeongsangbuk-do 37224, Republic of Korea

2. Department of Information & Computer Engineering, Ajou University, Worldcup-ro 206, Yeongtong-gu, Suwon 16499, Republic of Korea

Abstract

Ak-range nearest neighbor (kRNN) query in a spatial network finds thekclosest objects to each point in the query region. The essential nature of thekRNN query is significant in location-based services (LBSs), where location-aware queries with query regions such askRNN queries are frequently used because of the issue of location privacy and the imprecision of the associated positioning techniques. Existing studies focus on reducing computation costs at the server side while processingkRNN queries. They also consider snapshot queries that are evaluated once and terminated, as opposed to moving queries that require constant updating of their results. However, little attention has been paid to evaluating movingkRNN queries in directed and dynamic spatial networks where every edge is directed and its weight changes in accordance with the traffic conditions. In this paper, we propose an efficient algorithm called MORAN that evaluates movingk-range nearest neighbor (MkRNN) queries in directed and dynamic spatial networks. The results of a simulation conducted using real-life roadmaps indicate that MORAN is more effective than a competitive method based on a shared execution approach.

Funder

Kyungpook National University

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Computer Science Applications

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Tree Index Nearest Neighbor Search of Moving Objects along a Road Network;Wireless Communications and Mobile Computing;2021-09-29

2. A Survey of Moving Objects kNN Query in Road Network Environment;Lecture Notes in Electrical Engineering;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3