Research on the Structural Characteristics of Transmission Grid Based on Complex Network Theory

Author:

Zhao Jinli1,Zhou Hongshan1,Chen Bo1,Li Peng1

Affiliation:

1. Key Laboratory of Smart Grid of Ministry of Education, Tianjin University, Building 26E, 92 Weijin Road, Nankai District, Tianjin 300072, China

Abstract

Reasonable and strong structure is an important foundation for the smart transmission grid. For vigorously promoting construction of the smart grid, it is of great significance to have a thorough understanding of the complex structural characteristics of the power grid. The structural characteristics of several actual large-scale power grids of China are studied in this paper based on the complex network theory. Firstly, the topology-based network model of power grid is recalled for analyzing the statistical characteristic parameters. The result demonstrated that although some statistical characteristic parameters could reflect the topological characteristics of power grid from different ways, they have certain limitation in representing the electrical characteristics of power grid. Subsequently, the network model based on the electrical distance is established considering the limitation of topology-based model, which reflects that current and voltage distribution in the power grid are subject to Ohm's Law and Kirchhoff's Law. Comparing with the topology-based model, the electrical distance-based model performs better in reflecting the natural electrical characteristic structure of power grid, especially intuitive and effective in analyzing clustering characteristics and agglomeration characteristics of power grid. These two models could complement each other.

Funder

National Key Technology Support Program of China

Publisher

Hindawi Limited

Subject

Applied Mathematics

Reference20 articles.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3