Interference of Interleukin-1β Mediated by Lentivirus Promotes Functional Recovery of Spinal Cord Contusion Injury in Rats via the PI3K/AKT1 Signaling Pathway

Author:

Cao Jun-Feng12ORCID,Hu Xi3,Xiong Li1,Wu Mei1,Yang Xingyu1,Wang Chaochao1,Chen Shengyan1,Xu Hengxiang1,Chen Huanyu4,Ma Xuntai12ORCID,Mi Yongjie125ORCID,Zhang Xiao145ORCID

Affiliation:

1. Clinical Medical College of Chengdu Medical College, Chengdu, China

2. The First Affiliated Hospital of Chengdu Medical College, Chengdu, China

3. Taikang Tongji Wuhan Hospital, Wuhan, China

4. Basic Medical College of Chengdu Medical College, Chengdu, China

5. National Demonstration Center for Experimental Clinical Medicine Education of Chengdu Medical College, Chengdu, China

Abstract

Purpose. Inflammation and apoptosis after spinal cord contusion (SCC) are important causes of irreversible spinal cord injury. Interleukin-1β (IL-1β) is a key inflammatory factor that promotes the aggravation of spinal cord contusion. However, the specific role and regulatory mechanism of IL-1β in spinal cord contusion is still unclear. Therefore, this study applied bioinformatics to analyze and mine potential gene targets interlinked with IL-1β, animal experiments and lentiviral interference technology were used to explore whether IL-1β affected the recovery of motor function in spinal cord contusion by interfering with PI3K/AKT1 signaling pathway. Method. This study used bioinformatics to screen and analyze gene targets related to IL-1β. The rat SCC animal model was established by the Allen method, and the Basso Beattie Bresnahan (BBB) score was used to evaluate the motor function of the spinal cord-injured rats. Immunohistochemistry and immunofluorescence were used to localize the expression of IL-1β and AKT1 proteins in spinal cord tissue. Quantitative polymerase chain reaction and Western blot were used to detect the gene and protein expressions of IL-1β, PI3K, and AKT1. RNAi technology was used to construct lentivirus to inhibit the expression of IL-1β, lentiviral interference with IL-1β was used to investigate the effect of IL-1β and AKT1 on the function of spinal cord contusion and the relationship among IL-1β, AKT1, and downstream signaling pathways. Results. Bioinformatics analysis suggested a close relationship between IL-1β and AKT1. Animal experiments have confirmed that IL-1β is closely related to the functional recovery of spinal cord contusion. Firstly, from the phenomenological level, the BBB score decreased after SCC, IL-1β and AKT1 were located in the cytoplasm of neurons in the anterior horn of the spinal cord, and the expression levels of IL-1β gene and protein in the experimental group were higher than those in the sham operation group. At the same time, the expression of AKT1 gene decreased, the results suggested that the increase of IL-1β affected the functional recovery of spinal cord contusion. Secondly, from the functional level, after inhibiting the expression of IL-1β with a lentivirus-mediated method, the BBB score was significantly increased, and the motor function of the spinal cord was improved. Thirdly, from the mechanistic level, bioinformatics analysis revealed the relationship between IL-1β and AKT1. In addition, the experiment further verified that in the PI3K/AKT1 signaling pathway, inhibition of IL-1β expression upregulated AKT1 gene expression, but PI3K expression was unchanged. Conclusion. Inhibition of IL-1β promotes recovery of motor function after spinal cord injury in rats through upregulation of AKT1 expression in the PI3K/AKT1 signaling pathway. Bioinformatics analysis suggested that IL-1β may affect apoptosis and regeneration by inhibiting the expression of AKT1 in the PI3K/AKT1 signaling pathway to regulate the downstream FOXO, mTOR, and GSK3 signaling pathways; thereby hindering the recovery of motor function in rats after spinal cord contusion. It provided a new perspective for clinical treatment of spinal cord contusion in the future.

Funder

Sichuan College Students’ Innovation and Entrepreneurship Training Program

Publisher

Hindawi Limited

Subject

Cell Biology,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3