Impact of Financial R&D Resource Allocation Efficiency Based on VR Technology and Machine Learning in Complex Systems on Total Factor Productivity

Author:

Sun Hui1ORCID,Zhong Xiong2ORCID

Affiliation:

1. School of Economics and Statistics, Guangzhou University, Guangzhou 510006, Guangdong, China

2. Institute of Finance, Guangzhou University (Guangzhou Institute of International Finance), Guangzhou 510006, Guangdong, China

Abstract

With the development of the globalization of science and technology, innovation has become an important driving force for regional economic development. As a core element of regional innovation, financial R&D resources have also become a key element to enhance national innovation capabilities and national economic competitiveness. National and regional innovation capabilities have a direct impact. There are also many deep-seated problems behind the world-renowned achievements, such as irrational industrial structure, insufficient independent innovation capabilities, low resource utilization efficiency, and the service quality and efficiency of financial institutions for the transformation of total factor productivity. These problems extremely restrict the efficiency upgrade and further development of our country’s total factor productivity. This study uses the DEA-Malmquist index model to measure the efficiency of fiscal R&D resource allocation in 28 provinces and regions in China in the past 10 years and uses Mapinfo12.0 software to analyze regional differences in the efficiency of fiscal R&D resource allocation in China from a spatial perspective. During the year, the overall R&D resource allocation efficiency of 28 provinces and autonomous regions in China has shown an upward trend. The efficiency of fiscal R&D resource allocation and the concentration of financial factors have had a positive impact on total factor productivity, transform and upgrade factors, increase total factor productivity, and provide empirical evidence for building a strong country.

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3