Computational Analysis of Heat Transfer Intensification of Fractional Viscoelastic Hybrid Nanofluids

Author:

Khan Mumtaz1ORCID,Rasheed Amer1ORCID

Affiliation:

1. Department of Mathematics, School of Science and Engineering, Lahore University of Management Sciences, Opposite Sector U, DHA, Lahore Cantt., Lahore 54792, Pakistan

Abstract

In the current article, we have performed computational analysis on convection heat transfer of a hybrid nanofluid in occurrences where porous media and the effect of magnetic force are involved. In order to assess the time-fractional derivatives, Caputo’s notion is utilized while the Darcy–Forchheimer model is applied due to the involvement of the porous medium. Moreover, the boundary conditions are assumed to be nonuniform through the equilibrium between the surface tension and shear stress over a semi-infinite permeable flat surface. Keeping in view the complexity of the fractional derivative model and nonuniform boundary conditions, the problem in question is a complicated one. Accordingly, the coupled momentum and energy equation is linearized and the finite difference scheme is then applied and implemented in MATLAB Code R2020b. Furthermore, we have also offered a comprehensive analysis regarding error and convergence of the proposed numerical method. The newly introduced numerical technique to determine the numerical solutions and some unique and interesting deductions are established. From the computational results, one can conclude that the fluid motion in both hybrid and single nanofluids slows down due to magnetic field, porosity, and inertia coefficient as the magnetic and electric fields are synchronized due to the formation of the Lorentz force and viscous interference. We believe that our proposed numerical technique regarding employment of the fractional model for heat transfer application to the hybrid nanofluid over a semi-infinite nonuniform permeable surface along with variable heat flux is not found in the literature so far. Furthermore, the obtained results will be a valuable addition to fractional calculus from an engineering point of view.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Reference66 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3