Fast Disinfection ofEscherichia coliBacteria Using Carbon Nanotubes Interaction with Microwave Radiation

Author:

Al-Hakami Samer M.1,Khalil Amjad B.2,Laoui Tahar3,Atieh Muataz Ali1

Affiliation:

1. Department of Chemical Engineering, KFUPM, Dhahran 31261, Saudi Arabia

2. Department of Biology, KFUPM, Dhahran 31261, Saudi Arabia

3. Department of Mechanical Engineering, KFUPM, Dhahran 31261, Saudi Arabia

Abstract

Water disinfection has attracted the attention of scientists worldwide due to water scarcity. The most significant challenges are determining how to achieve proper disinfection without producing harmful byproducts obtained usually using conventional chemical disinfectants and developing new point-of-use methods for the removal and inactivation of waterborne pathogens. The removal of contaminants and reuse of the treated water would provide significant reductions in cost, time, liabilities, and labour to the industry and result in improved environmental stewardship. The present study demonstrates a new approach for the removal ofEscherichia coli(E. coli) from water using as-produced and modified/functionalized carbon nanotubes (CNTs) with 1-octadecanol groups (C18) under the effect of microwave irradiation. Scanning/transmission electron microscopy, thermogravimetric analysis, and FTIR spectroscopy were used to characterise the morphological/structural and thermal properties of CNTs. The 1-octadecanol (C18) functional group was attached to the surface of CNTs via Fischer esterification. The produced CNTs were tested for their efficiency in destroying the pathogenic bacteria (E. coli) in water with and without the effect of microwave radiation. A low removal rate (3–5%) of (E. coli) bacteria was obtained when CNTs alone were used, indicating that CNTs did not cause bacterial cellular death. When combined with microwave radiation, the unmodified CNTs were able to remove up to 98% of bacteria from water, while a higher removal of bacteria (up to 100%) was achieved when CNTs-C18was used under the same conditions.

Publisher

Hindawi Limited

Subject

Inorganic Chemistry,Organic Chemistry,Biochemistry

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3