In-Network Adaptation of Video Streams Using Network Processors

Author:

Shorfuzzaman Mohammad1,Eskicioglu Rasit1,Graham Peter1

Affiliation:

1. Department of Computer Science, University of Manitoba, Winnipeg, MB, Canada R3T 2N2

Abstract

The increasing variety of networks and end systems, especially wireless devices, pose new challenges in communication support for, particularly, multicast-based collaborative applications. In traditional multicasting, the sender transmits video at the same rate and resolution to all receivers independent of their network characteristics, end system equipment, and users' preferences about video quality and significance. Such an approach results in resources being wasted and may also result in some receivers having their quality expectations unsatisfied. This problem can be addressed, near the network edge, by applying dynamic, in-network adaptation (e.g., transcoding) of video streams to meet available connection bandwidth, machine characteristics, and client preferences. In this paper, we extrapolate from earlier work of Shorfuzzaman et al. 2006 in which we implemented and assessed an MPEG-1 transcoding system on the Intel IXP1200 network processor to consider the feasibility of in-network transcoding for other video formats and network processor architectures. The use of “on-the-fly” video adaptation near the edge of the network offers the promise of simpler support for a wide range of end devices with different display, and so forth, characteristics that can be used in different types of environments.

Funder

University of Manitoba

Publisher

Hindawi Limited

Subject

General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. In-segment Content Server Adaptation for Dual Adaptation Mechanism in DASH;2013 Fifth International Conference on Computational Intelligence, Communication Systems and Networks;2013-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3