A Novel Cellular Handset Design for an Enhanced Antenna Performance and a Reduced SAR in the Human Head

Author:

Al-Mously Salah I.12,Abousetta Marai M.12

Affiliation:

1. Department of Electrical and Electronics Engineering, School of Applied Sciences and Engineering, Academy of Graduate Studies, P.O. Box 79031, Janzoor, Tripoli, Libya

2. Department of Microwave and Radar Engineering, The Higher Institute of Electronics, P.O. Box 38645, Beni-Walid, Libya

Abstract

This paper presents a novel cellular handset design with a bottom-mounted short loaded-whip antenna. This new handset design is modeled and simulated using a finite difference time-domain (FDTD)-based platformSEMCAD. The proposed handset is based on a current commercially available bar-phone type with a curvature shape, keypad positioned above the screen, and top-mounted antenna. The specific absorption rates (SARs) are determined computationally in the specific anthropomorphic mannequin (SAM) and anatomically correct model of a human head when exposed to the EM-field radiation of the proposed cellular handset and the handset with top-mounted antenna. The two cellular handsets are simulated to operate at both GSM standards, 900 MHz as well as 1800 MHz, having different antenna dimensions and intput power of 0.6 W and 0.125 W, respectively. The proposed human hand holding the two handset models is a semirealistic hand model consists of three tissues: skin, muscle, and bone. The simulations are conducted with handset positions based on the IEEE standard 1528-2003. The results show that the proposed handset has a significant improvement of antenna efficiency when it is hand-held close to head, as compared with the handset of top-mounted antenna. Also, the results show that a significant reduction of the induced SAR in the human head-tissues can be achieved with the proposed handset.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3