Microporous MOF-5@AC and Cu-BDC@AC Composite Materials for Methane Storage in ANG Technology

Author:

Nikravesh Niloufar Yadavar1,Beygzadeh Mojtaba1ORCID,Adl Mehrdad1

Affiliation:

1. Department of Energy, Materials and Energy Research Center, P.O. Box: 14155-4777, Tehran, Iran

Abstract

Novel composites (MOF-5 and Cu-BDC) based on economically activated carbon have been developed to investigate methane adsorption capacity for ANG applications. The composites were synthesized by adding MOFs precursor in two different weight percent (10% and 40%) to commercial activated carbon under solvothermal conditions (110-120°C). The synthesized adsorbents were characterized by FT-IR, XRD, SEM, EDS, and BET techniques to gather information about their crystallinity, morphology, and specific surface area. A methane uptake measurement system based on the volumetric method was made to obtain methane adsorption capacity on each composite. Then, the amount of methane adsorption for each one was calculated, and the experimental data were compared with different isotherm adsorption models appropriate for gas adsorption, including Langmuir, Freundlich, and Dubinin-Radushkevich. This comparison showed that the best fitting belonged to the Langmuir isotherm model. Also, stability and kinetic studies were done for two MOF-540% @AC and Cu-BDC40% @AC composites. In the kinetics study, experimental data were compared and analyzed in terms of pseudo-first order, pseudo-second order, and intraparticle diffusion models. The kinetics study showed that methane adsorption happens very fast on the synthesized adsorbents. The amount of methane adsorption at 35 bar and room temperature for pure activated carbon was specified as 4.32 mmol/g. The 10% and 40% of Cu-BDC with activated carbon are 5.59 mmol/g and 6.85 mmol/g, respectively. The capacity of MOF-510% @AC and MOF-540% @AC composites were obtained at 5.9 mmol/g and 7.3 mmol/g, respectively. Increasing methane uptake (70%) was obtained by adding 40 wt.% of MOF-5 to commercial activated carbon.

Publisher

Hindawi Limited

Subject

Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3