Mathematical Modeling and Mechanism of VUV Photodegradation of H2S in the Absence of O2

Author:

Xu Jian-hui1,Ding Bin-bin2,Lv Xiao-mei1ORCID,Lan Shan-hong1,Li Chao-lin2,Peng Liu1

Affiliation:

1. School of Environmental and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong 523808, China

2. Environmental Science and Engineering Center, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, Guangdong 518055, China

Abstract

The existence of H2S has limited the biogas energy promotion. The traditional photodegradation of H2S is usually conducted in the presence of O2, yet this is unsuitable for biogas desulfurization which should be avoided. Therefore, the ultraviolet degradation of H2S in the absence of O2 was investigated for the first time in the present study from a mathematical point of view. Light wavelength and intensity applied were 185 nm and 2.16 × 10−12 Einstein/cm2·s, respectively. Firstly, the mathematical model of H2S photodegradation was established with MATLAB software, including the gas flow distribution model and radiation model of photoreactor, kinetics model, mass balance model, and calculation model of the degradation rate. Then, the influence of the initial H2S concentration and gas retention time on the photodegradation rate were studied, for verification of the mathematical model. Results indicated that the photodegradation rate decreased with the increase in initial H2S concentration, and the maximum photodegradation rate reached 62.8% under initial concentration of 3 mg/m3. In addition, the photodegradation rate of H2S increased with the increase in retention time. The experimental results were in good accordance with the modeling results, indicating the feasibility of the mathematical model to simulate the photodegradation of H2S. Finally, the intermediate products were simulated and results showed that the main photodegradation products were found to be H2 and elemental S, and concentrations of the two main products were close and agreed well with the reaction stoichiometric coefficients. Moreover, the concentration of free radicals of H• and SH• was rather low.

Funder

Development of Social Science and Technology in Dongguan

Publisher

Hindawi Limited

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment,Atomic and Molecular Physics, and Optics,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3