Comparative Evaluation of Liquid Cooling-Based Battery Thermal Management Systems: Fin Cooling, PCM Cooling, and Intercell Cooling

Author:

Choi Hongseok1ORCID,Lee Hyoseong1ORCID,Han Ukmin1ORCID,Jung Juneyeol1ORCID,Lee Hoseong1ORCID

Affiliation:

1. Department of Mechanical Engineering, Korea University, 409 Innovation Hall Bldg, Anam-dong, Seongbuk-gu, Seoul, Republic of Korea

Abstract

The escalating demand for electric vehicles and lithium-ion batteries underscores the critical need for diverse battery thermal management systems (BTMSs) to ensure optimal battery performance. Despite this, a comprehensive comparative analysis remains absent. This study seeks to assess and compare the thermal and hydraulic performances of three prominent BTMSs: fin cooling, intercell cooling, and PCM cooling. Simulation models were meticulously developed and experimentally validated, with each system’s design parameters optimized under identical volumes to ensure equitable comparisons. In the context of fast-charging conditions, intercell cooling consistently met and even surpassed the desired target temperature, reducing the maximum temperature to 30.6°C with an increasing flow rate, while fin cooling faced challenges. Effective control of coolant temperature emerged as a critical factor for achieving optimal PCM cooling, with a potential reduction in temperature difference by 4.3 K. Despite exhibiting higher power consumption, intercell cooling demonstrated the most efficient cooling effect during fast charging. Considering the BTMS weight, fin cooling exhibited the lowest energy density, approximately half that of other methods. Addressing precooling and preheating conditions for high and low temperatures, the intercell method proved adept at meeting temperature requirements with minimal power consumption in significantly shorter durations. Conversely, the practicality of using PCM at high temperatures was deemed challenging.

Funder

Ministry of Science, ICT and Future Planning

Publisher

Hindawi Limited

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3