Affiliation:
1. College of Information Engineering, Xiangtan University, Xiangtan 411105, China
2. Key Laboratory of Intelligent Computing & Information Processing of MOE, Xiangtan 411105, China
Abstract
The problem of consensus-based distributed tracking in wireless sensor networks (WSNs) with switching network topologies and outlier-corrupted sensor observations is considered. First, to attack the outlier-corrupted measurements, a robust Kalman filtering (RKF) scheme with weighted matrices on innovation sequences is introduced. The proposed RKF possesses high robustness against outliers while having similar computational burden as traditional Kalman filter. Then, each node estimates the network-wide agreement on target state using only communications between one-hop neighbors. In order to improve the convergent speed of the consensus filter in case of switching topologies, an adaptive weight update strategy is proposed. Note that the proposed algorithm relaxes the requirement of Gaussian noise statistics in contrast to the decentralized/distributed Kalman filters. Besides, unlike the existing consensus-based filters, we do not need to perform consensus filtering on the covariance matrices, which will reduce the computational and communicational burden abundantly. Finally, simulation examples are included to demonstrate the robustness of the proposed RKF and effectiveness of adaptive consensus approach.
Funder
National Natural Science Foundation of China
Subject
Computer Networks and Communications,General Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献