Supervised AutoEncoder-Based Beamforming Approach for Satellite mmWave Communication

Author:

Shojaei Seyed Pouya1ORCID,Soleimani Hossein1ORCID,Soleimani Mohammad1ORCID

Affiliation:

1. School of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran

Abstract

Beamforming is a technique commonly used in wireless communication systems to enhance the signal quality of a receiver. In this study, we compare the performance of an encoder-based beamformer with convolutional neural network (CNN) and minimum variance distortionless response (MVDR) approaches in terms of signal-to-interference-plus-noise ratio (SINR). Our results show that the encoder-based approach achieved an average SINR of 25.82 dB, while the CNN approach achieved an average SINR of 22.40 dB and the MVDR approach achieved an average SINR of 17.64 dB. The performance of the encoder-based approach was found to be superior to that of the CNN approach but much superior to that of the MVDR approach. The encoder-based approach outperformed the CNN approach by 3.42 dB and MVDR approach by 8.18 dB on average. In addition, the unique contribution of our encoder-based approach is presenting a new perspective on beamforming in mmWave communication. We further discuss its potential impact on addressing challenges related to LEO satellite systems.

Funder

Iran University of Science and Technology

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3