A Novel Nomogram and Risk Classification System Predicting the Cancer-Specific Survival of Muscle-Invasive Bladder Cancer Patients after Partial Cystectomy

Author:

Zhan Xiangpeng12,Chen Tao12,Jiang Ming12,Deng Wen12ORCID,Liu Xiaoqiang12ORCID,Chen Luyao12ORCID,Fu Bin12ORCID

Affiliation:

1. Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China

2. Department of Health Statistics, Second Military Medical University, Shanghai, China

Abstract

Purpose. To establish a prognostic model that estimates cancer-specific survival (CSS) probability for muscle-invasive bladder cancer patients undergoing partial cystectomy. Patients and Methods. 866 patients from the Surveillance, Epidemiology, and End Results (SEER) database (2004–2015) were enrolled in our study. These patients were randomly divided into the development cohort (n = 608) and validation cohort (n = 258) at a ratio of 7 : 3. A Cox regression was performed to select the predictors associated with CSS. The Kaplan–Meier method was used to analyze the survival outcome between different risk groups. The calibration curves, receiver operating characteristic (ROC) curves, and the concordance index (C-index) were utilized to evaluate the performance of the model. Results. The nomogram incorporated age, histology, T stage, N stage, M stage, regional nodes examined, and tumour size. The C-index of the model was 0.733 (0.696–0.77) in the development cohort, while this value was 0.707 (0.705–0.709) in the validation cohort. The AUC of the nomogram was 0.802 for 1-year, 0.769 for 3-year, and 0.799 for 5-year, respectively, in the development cohort, and was 0.731 for 1-year, 0.748 for 3-year, and 0.752 for 5-year, respectively, in the validation cohort. The calibration curves for 1-year, 3-year, and 5-year CSS showed great concordance. Significant differences were observed between high, medium, and low risk groups ( P < 0.001 ). Conclusions. We have constructed a highly discriminative and precise nomogram and a corresponding risk classification system to predict the cancer-specific survival for muscle-invasive bladder cancer patients undergoing partial cystectomy. The model can assist in the decision on choice of treatment, patient counselling, and follow-up scheduling.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3