Identification of the Mechanism of Matrine Combined with Glycyrrhizin for Hepatocellular Carcinoma Treatment through Network Pharmacology and Bioinformatics Analysis

Author:

Han Tao1ORCID,Liu Yiming2ORCID,Chen Yutong3ORCID,Chen Tingsong4ORCID,Li Yifan5ORCID,Li Qiuhua2ORCID,Zhao Mingfang1ORCID

Affiliation:

1. Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110000, China

2. Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110000, China

3. The General Hospital of Northern Theater Command Training Base for Graduate, China Medical University, Shenyang, Liaoning 110000, China

4. Department of Oncology, Shanghai Seventh People’s Hospital, Shanghai 200137, China

5. The First Department of Clinical Medicine, China Medical University, Shenyang, Liaoning 110000, China

Abstract

Matrine and glycyrrhizin are representative active ingredients of traditional Chinese medicine (TCM) used in clinical practice. Studies have demonstrated that matrine has antitumor pharmacological effects and that glycyrrhizin protects liver function. However, the potential bioactive compounds and mechanisms remain unknown, as well as whether they have synergistic effects in killing cancer cells and protecting liver cells. To investigate the synergistic effects and mechanism of matrine combined with glycyrrhizin in hepatocellular carcinoma (HCC) treatment, we used both network pharmacology and bioinformatics analyses. First, the chemical gene interaction information of matrine and glycyrrhizin was obtained from the PubChem database. The pathogenic genes of HCC were accessed from five public databases. The RNA sequencing data and clinical information of HCC patients were downloaded from The Cancer Genome Atlas (TCGA). Next, the overlapping genes among the potential targets of matrine and glycyrrhizin and HCC-related targets were determined using bioinformatics analysis. We constructed the drug-target interaction network. Prognosis-associated genes were acquired through the univariate Cox regression model and Lasso-Cox regression model. The results were verified by the International Cancer Genome Consortium (ICGC) database. Finally, we predicted the immune function of the samples. The drug-target interaction network consisted of 10 matrine and glycyrrhizin targets. We selected a Lasso-Cox regression model consisting of 3 differentially expressed genes (DEGs) to predict the efficacy of the combination in HCC. Subsequently, we successfully predicted the overall survival of HCC patients using the constructed prognostic model and investigated the correlation of the immune response. Matrine and glycyrrhizin have synergistic effects on HCC. The model we obtained consisted of three drug-target genes by Lasso-Cox regression analysis. The model independently predicted the combined effect of matrine and glycyrrhizin in HCC treatment and OS, which will be helpful for guiding clinical treatment. The prognostic model was correlated with the immune cells and immune checkpoints of patients, which had an adjuvant effect on HCC immunotherapy. Matrine and glycyrrhizin can have therapeutic effects on HCC by promoting the production or enhancing the core gene activity in the drug network and improving the immune system function of patients.

Funder

Shanghai Municipal Health Commission

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3