Nicotine Exacerbates TAAD Formation Induced by Smooth Muscle-Specific Deletion of the TGF-β Receptor 2

Author:

Chun Changzoon1,Qi Xiaoyan1,Wang Fen1,Madrid Kyle B.1,Saldarriaga Lennon A.1,Fisch Max R.1,Brantly Mark L.2,Upchurch Gilbert R.1,Jiang Zhihua1ORCID

Affiliation:

1. Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville, FL 32603, USA

2. Department of Medicine, University of Florida College of Medicine, Gainesville, FL 32603, USA

Abstract

Tobacco smoke is an established risk factor for thoracic aortic aneurysms and dissections (TAAD). However, little is known about its underlying mechanisms due to the lack of validated animal models. The present study developed a mouse model that may be utilized to investigate exacerbation of TAAD formation by mimetics of tobacco smoke. TAADs were created via inducible deletion of smooth muscle cell-specific Tgfbr2 receptors. Using this model, the first set of experiments evaluated the efficacy of nicotine salt (34.0 mg/kg/day), nicotine free base (NFB, 5.0 mg 90-day pellets), and cigarette smoke extract (0.1 ml/mouse/day). Compared with their respective control groups, only NFB pellets promoted TAAD dilation ( 23 ± 3 % vs. 12 ± 2 % , P = 0.014 ), and this efficacy was achieved at a cost of >50% acute mortality. Infusion of NFB with osmotic minipumps at extremely high, but nonlethal, doses (15.0 or 45.0 mg/kg/day) failed to accelerate TAAD dilation. Interestingly, costimulation with β-aminopropionitrile (BAPN) promoted TAAD dilation and aortic rupture at dosages of 3.0 and 45.0 mg/kg/day, respectively, indicating that BAPN sensitizes the response of TAADs to NFB. In subsequent analyses, the detrimental effects of NFB were associated with clustering of macrophages, neutrophils, and T-cells in areas with structural destruction, enhanced matrix metalloproteinase- (MMP-) 2 production, and pathological angiogenesis with attenuated fibrosis in the adventitia. In conclusion, modeling nicotine exacerbation of TAAD formation requires optimization of chemical form, route of delivery, and dosage of the drug as well as the pathologic complexity of TAADs. Under the optimized conditions of the present study, chronic inflammation and adventitial mal-remodeling serve as critical pathways through which NFB exacerbates TAAD formation.

Funder

National Heart, Lung, and Blood Institute

Publisher

Hindawi Limited

Subject

Immunology,General Medicine,Immunology and Allergy

Reference53 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3