Neural Network for Intelligent and Efficient Volleyball Passing Training

Author:

Liu Bo1ORCID,Yang Ning1ORCID,Han Xiangwei1,Liu Chen1

Affiliation:

1. Shandong Youth University of Political Science, Jinan 250103, China

Abstract

Passing is a relatively basic technique in volleyball. In volleyball passing teaching, training the correct passing technique plays a very important role. The correct pass can not only accurately grasp the direction of the ball point and the drop point but also effectively connect the defense and the offense. In order to improve the efficiency and quality of volleyball passing training, improve the precise extraction of sport targets, reduce redundant feature information, and improve the generalization performance and nonlinear fitting capabilities of the algorithm, this paper studies volleyball based on the nested convolutional neural network model and passing training wrong movement detection method. The structure of the convolutional neural network is improved by nesting mlpconv layers, and the Gaussian mixture model is used to effectively and accurately extract the foreground objects in the video. The nested multilayer mlpconv layer automatically learns the deep-level features of the foreground target, and the generated feature map is vectorized and input to the Softmax classifier connected to the fully connected layer for passing wrong behavior detection in volleyball training. Based on the detection of nearly 1,000 athletes’ action datasets, the simulation experiment results show that the algorithm reduces the acquisition of redundant information and shortens the calculation time and learning time of the algorithm, and the improved convolutional neural network has generalization performance and nonlinearity. The fitting ability has been improved, and the detection of abnormal volleyball passing behaviors has achieved a higher accuracy rate.

Funder

Social Science Planning Project of Shandong Province

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Computer Science Applications

Reference26 articles.

1. ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices

2. MobileNets: efficient convolutional neural networks for mobile vision applications;A. G. Howard,2017

3. FractalNet:Ultra-Deep neural networks without residuals;G. Larsson,2017

4. Deep Pyramidal Residual Networks

5. Squeeze-and-Excitation Networks

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3