Modelling the Transmission Dynamics of COVID-19 in Six High-Burden Countries

Author:

Rahman Azizur1ORCID,Kuddus Md Abdul23ORCID

Affiliation:

1. Data Science Research Unit, School of Computing and Mathematics, Charles Sturt University, Wagga Wagga, NSW 2678, Australia

2. Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4810, Australia

3. Department of Mathematics, University of Rajshahi, Rajshahi 6205, Bangladesh

Abstract

The new Coronavirus Disease 19, officially known as COVID-19, originated in China in 2019 and has since spread worldwide. We presented an age-structured Susceptible-Latent-Mild-Critical-Removed (SLMCR) compartmental model of COVID-19 disease transmission with nonlinear incidence during the pandemic period. We provided the model calibration to estimate parameters with day-wise COVID-19 data, i.e., reported cases by worldometer from 15th February to 30th March 2020 in six high-burden countries, including Australia, Italy, Spain, the USA, the UK, and Canada. We estimate transmission rates for each country and found that the country with the highest transmission rate is Spain, which may increase the new cases and deaths than the other countries. We found that saturation infection negatively impacted the dynamics of COVID-19 cases in all the six high-burden countries. The study used a sensitivity analysis to identify the most critical parameters through the partial rank correlation coefficient method. We found that the transmission rate of COVID-19 had the most significant influence on prevalence. The prediction of new cases in COVID-19 until 30th April 2020 using the developed model was also provided with recommendations to control strategies of COVID-19. We also found that adults are more susceptible to infection than both children and older people in all six countries. However, in Italy, Spain, the UK, and Canada, older people show more susceptibility to infection than children, opposite to the case in Australia and the USA. The information generated from this study would be helpful to the decision-makers of various organisations across the world, including the Ministry of Health in Australia, Italy, Spain, the USA, the UK, and Canada, to control COVID-19.

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3