Effects of Multiwalled Carbon Nanotube Surface Modification and Purification on Bovine Serum Albumin Binding and Biological Responses

Author:

Bai Wei1,Wu Zheqiong2,Mitra Somenath2ORCID,Brown Jared M.1ORCID

Affiliation:

1. Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, CO 80045, USA

2. Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA

Abstract

Carboxylation of multiwalled carbon nanotubes (MWCNTs) has been used to improve solubility in aqueous systems and for further functionalization with biologically active moieties for biomedical uses. An important consideration is that oxidation debris is generated during the process of carboxylation, which can be removed by base washing. We hypothesized that surface modification as well as purification by debris removal may alter physicochemical properties of MWCNTs and their ability to bind proteins. We utilized pristine MWCNT, carboxylated MWCNTs (F-MWCNTs), and base-washed carboxylated MWCNTs (BW-F-MWCNTs) to examine formation of a bovine serum albumin (BSA) protein corona and impact on biological responses. We found that carboxylation increased the capability of F-MWCNTs to bind BSA, and base washing further increased this binding. Functionalization increased cellular uptake by rat aortic endothelial cells (RAEC) and mouse macrophages (RAW264.7), while base washing showed results similar to the functionalized analog. Interestingly, BSA binding downregulated mRNA levels of interleukin-6 (IL-6) and heme oxygenase 1 (Hmox1) in RAEC cells but upregulated the expression of IL-6 and Hmox1 in RAW264.7 cells. Overall, our study demonstrated that surface modification as well as further purification impacted the interaction of MWCNTs with proteins and subsequent cellular responses.

Funder

National Institutes of Health

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3